dafabet手机黄金版_dafabet黄金手机版

晶诚所至 生命所能

Engage to Life Energy

 
单细胞转录组基础分析八:可视化工具总结
发布日期:2021-12-10浏览:

Seurat自带一些优秀的可视化工具,之前的分析内容陆续展示过一些,本节内容将总结这些可视化函数的使用。

图片

 

RidgePlot山脊图

 

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
	library(Seurat)library(tidyverse)library(patchwork)rm(list=ls())dir.create("visual")scRNA <- readRDS("scRNA.rds")p1 = RidgePlot(scRNA, features = "FCN1")p2 = RidgePlot(scRNA, features = "PC_2")plotc = p1/p2 + plot_layout(guides = 'collect')ggsave('visual/ridgeplot_eg.png', plotc, width = 8,height = 8)

 

 

图片

VlnPlot小提琴图

 

 

  •  
  •  
  •  
  •  
	p1 = VlnPlot(scRNA, features = "nCount_RNA", pt.size = 0)p2 = VlnPlot(scRNA, features = "CD8A", pt.size = 0)plotc = p1/p2 + plot_layout(guides = 'collect')ggsave('visual/vlnplot_eg.png', plotc, width = 8,height = 8)

 

 

图片

FeaturePlot特征图

 

 

  •  
  •  
  •  
  •  
	p1 <- FeaturePlot(scRNA,features = "CD8A", reduction = 'umap')p2 <- FeaturePlot(scRNA,features = "CD79A", reduction = 'umap')plotc = p1|p2ggsave('visual/featureplot_eg.png', plotc, width = 10, height = 4)

 

 

 

图片

 

DotPlot点图

 

 

  •  
  •  
  •  
	genelist = c('LYZ','CD79A','CD8A','CD8B','GZMB','FCGR3A')p = DotPlot(scRNA, features = genelist)ggsave('visual/dotplot_eg.png', p, width = 7, height = 5)

 

 

 

图片

 

DoHeatmap热图

 

 

  •  
  •  
  •  
  •  
	genelist = read.csv("cell_identify/top10_diff_genes_wilcox.csv")genelist <- pull(genelist, gene) %>% as.characterp = DoHeatmap(scRNA, features = genelist, group.by = "seurat_clusters")ggsave('visual/heatmap_eg.png', p, width = 12, height = 9)

 

 

 

图片

 

FeatureScatter散点图

 

 

  •  
  •  
  •  
  •  
	p1 <- FeatureScatter(scRNA, feature1 = 'PC_1', feature2 = 'PC_2')p2 <- FeatureScatter(scRNA, feature1 = 'nCount_RNA', feature2 = 'nFeature_RNA')plotc = p1|p2ggsave('visual/featurescatter_eg.png', plotc, width = 10, height = 4)

 

 

 

图片

DimPlot降维图

 

 

  •  
  •  
  •  
  •  
  •  
  •  
	p1 <- DimPlot(scRNA, reduction = 'tsne', group.by = "celltype", label=T)p2 <- DimPlot(scRNA, reduction = 'umap', group.by = "Phase", label=T)p3 <- DimPlot(scRNA, reduction = 'pca', group.by = "celltype", label=T)p4 <- DimPlot(scRNA, reduction = 'umap', group.by = "seurat_clusters", label=T)plotc = (p1|p2)/(p3|p4)ggsave('visual/dimplot_eg.png', plotc, width = 10, height = 8)

 

 

 

图片

上一条:单细胞转录组高级分析一:多样本合并与批次校正
下一条:活动进入倒计时,满10赠1,省的不止亿点点!
返回
网站地图 | 法律声明 | 联系我们

地址:上海市松江区中心路1158号5幢5楼

电话:400-9200-612  传真:+86 21 6090 1207/1208-8154

dafabet手机黄金版技术(上海)有限公司 Copyright 2012 Genergy Inc. 沪ICP备10017363号

友情链接: