dafabet手机黄金版_dafabet黄金手机版

晶诚所至 生命所能

Engage to Life Energy

 
单细胞转录组基础分析七:差异基因富集分析
发布日期:2021-11-26浏览:

此前的分析我们按转录特征把细胞分成了很多类别,例如seurat聚类分析得到的按cluster分类,singleR分析得到的按细胞类型分类,monocle分析得到的按拟时状态(state)分类。不同的细胞类型之间,有哪些表达差异基因呢,这些差异基因有特别的意义吗?

 


 

 



基因差异表达分析

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
	library(Seurat)library(tidyverse)library(patchwork)library(monocle)library(clusterProfiler)library(org.Hs.eg.db)rm(list=ls())dir.create("enrich")scRNA <- readRDS("scRNA.rds")mycds <- readRDS("mycds.rds")#比较cluster0和cluster1的差异表达基因dge.cluster <- FindMarkers(scRNA,ident.1 = 0,ident.2 = 1)sig_dge.cluster <- subset(dge.cluster, p_val_adj<0.01&abs(avg_logFC)>1)#比较B_cell和T_cells的差异表达基因dge.celltype <- FindMarkers(scRNA, ident.1 = 'B_cell', ident.2 = 'T_cells', group.by = 'celltype')sig_dge.celltype <- subset(dge.celltype, p_val_adj<0.01&abs(avg_logFC)>1)#比较拟时State1和State3的差异表达基因p_data <- subset(pData(mycds),select='State')scRNAsub <- subset(scRNA, cells=row.names(p_data))scRNAsub <- AddMetaData(scRNAsub,p_data,col.name = 'State')dge.State <- FindMarkers(scRNAsub, ident.1 = 1, ident.2 = 3, group.by = 'State')sig_dge.State <- subset(dge.State, p_val_adj<0.01&abs(avg_logFC)>1)

 

 

 

 

 



差异基因GO富集分析


 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
	#差异基因GO富集分析ego_ALL <- enrichGO(gene          = row.names(sig_dge.celltype),                   #universe     = row.names(dge.celltype),                   OrgDb         = 'org.Hs.eg.db',                   keyType       = 'SYMBOL',                   ont           = "ALL",                   pAdjustMethod = "BH",                   pvalueCutoff  = 0.01,                   qvalueCutoff  = 0.05)ego_all <- data.frame(ego_ALL)write.csv(ego_all,'enrich/enrichGO.csv')           ego_CC <- enrichGO(gene          = row.names(sig_dge.celltype),                   #universe     = row.names(dge.celltype),                   OrgDb         = 'org.Hs.eg.db',                   keyType       = 'SYMBOL',                   ont           = "CC",                   pAdjustMethod = "BH",                   pvalueCutoff  = 0.01,                   qvalueCutoff  = 0.05)ego_MF <- enrichGO(gene          = row.names(sig_dge.celltype),                   #universe     = row.names(dge.celltype),                   OrgDb         = 'org.Hs.eg.db',                   keyType       = 'SYMBOL',                   ont           = "MF",                   pAdjustMethod = "BH",                   pvalueCutoff  = 0.01,                   qvalueCutoff  = 0.05)ego_BP <- enrichGO(gene          = row.names(sig_dge.celltype),                   #universe     = row.names(dge.celltype),                   OrgDb         = 'org.Hs.eg.db',                   keyType       = 'SYMBOL',                   ont           = "BP",                   pAdjustMethod = "BH",                   pvalueCutoff  = 0.01,                   qvalueCutoff  = 0.05)           ego_CC@result$Description <- substring(ego_CC@result$Description,1,70)ego_MF@result$Description <- substring(ego_MF@result$Description,1,70)ego_BP@result$Description <- substring(ego_BP@result$Description,1,70)p_BP <- barplot(ego_BP,showCategory = 10) + ggtitle("barplot for Biological process")p_CC <- barplot(ego_CC,showCategory = 10) + ggtitle("barplot for Cellular component")p_MF <- barplot(ego_MF,showCategory = 10) + ggtitle("barplot for Molecular function")plotc <- p_BP/p_CC/p_MFggsave('enrich/enrichGO.png', plotc, width = 12,height = 10)

 

 

图片

 


 

 



差异基因kegg富集分析


 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
	genelist <- bitr(row.names(sig_dge.celltype), fromType="SYMBOL",                           toType="ENTREZID", OrgDb='org.Hs.eg.db')genelist <- pull(genelist,ENTREZID)               ekegg <- enrichKEGG(gene = genelist, organism = 'hsa')p1 <- barplot(ekegg, showCategory=20)p2 <- dotplot(ekegg, showCategory=20)plotc = p1/p2ggsave("enrich/enrichKEGG.png", plot = plotc, width = 12, height = 10)

 

 

图片

上一条:dafabet黄金手机版学院直播上新|体内 CRISPR 筛选确定 E3 连接酶 Cop1 作为巨噬细胞浸润和癌症免疫治疗靶标的调节剂
下一条:“儿童肾小管疾病系列学术讲座”第5期——《肾小管疾病的实验室检查及评价》
返回
网站地图 | 法律声明 | 联系我们

地址:上海市松江区中心路1158号5幢5楼

电话:400-9200-612  传真:+86 21 6090 1207/1208-8154

dafabet手机黄金版技术(上海)有限公司 Copyright 2012 Genergy Inc. 沪ICP备10017363号

友情链接: